博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
第09课:【实战】Redis网络通信模块源码分析(2)
阅读量:5364 次
发布时间:2019-06-15

本文共 11672 字,大约阅读时间需要 38 分钟。

侦听 fd 与客户端 fd 是如何挂载到 EPFD 上去的

  同样的方式,要把一个 fd 挂载到 EPFD 上去,需要调用系统 API epoll_ctl ,搜索一下这个函数名。在文件 ae_epoll.c 中我们找到 aeApiAddEvent 函数:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {    aeApiState *state = eventLoop->apidata;    struct epoll_event ee = {0}; /* avoid valgrind warning */    /* If the fd was already monitored for some event, we need a MOD     * operation. Otherwise we need an ADD operation. */    int op = eventLoop->events[fd].mask == AE_NONE ?            EPOLL_CTL_ADD : EPOLL_CTL_MOD;    ee.events = 0;    mask |= eventLoop->events[fd].mask; /* Merge old events */    if (mask & AE_READABLE) ee.events |= EPOLLIN;    if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;    ee.data.fd = fd;    if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;    return 0;}

  

  当把一个 fd 绑定到 EPFD 上去的时候,先从 eventLoop( aeEventLoop类型 )中寻找是否存在已关注的事件类型,如果已经有了,说明使用 epoll_ctl 是更改已绑定的 fd 事件类型( EPOLL_CTL_MOD ),否则就是添加 fd 到 EPFD 上。

  在 aeApiAddEvent 加个断点,再重启下 redis-server 。触发断点后的调用堆栈如下:

#0  aeCreateFileEvent (eventLoop=0x7ffff083a0a0, fd=15, mask=mask@entry=1, proc=0x437f50 
, clientData=clientData@entry=0x0) at ae.c:145#1 0x000000000042f83b in initServer () at server.c:1927#2 0x0000000000423803 in main (argc=
, argv=0x7fffffffe588) at server.c:3857

  同样在 initServer 函数中,结合上文分析的侦听 fd 的创建过程,去掉无关代码,抽出这个函数的主脉络得到如下伪代码:

void initServer(void) {    //记录程序进程 ID       server.pid = getpid();    //创建程序的 aeEventLoop 对象和 epfd 对象    server.el = aeCreateEventLoop(server.maxclients+CONFIG_FDSET_INCR);    //创建侦听 fd    listenToPort(server.port,server.ipfd,&server.ipfd_count) == C_ERR)    //将侦听 fd 设置为非阻塞的    anetNonBlock(NULL,server.sofd);    //创建 Redis 的定时器,用于执行定时任务 cron    /* Create the timer callback, this is our way to process many background     * operations incrementally, like clients timeout, eviction of unaccessed     * expired keys and so forth. */    aeCreateTimeEvent(server.el, 1, serverCron, NULL, NULL) == AE_ERR    //将侦听 fd 绑定到 epfd 上去    /* Create an event handler for accepting new connections in TCP and Unix     * domain sockets. */     aeCreateFileEvent(server.el, server.ipfd[j], AE_READABLE, acceptTcpHandler,NULL) == AE_ERR    //创建一个管道,用于在需要时去唤醒 epoll_wait 挂起的整个 EventLoop    /* Register a readable event for the pipe used to awake the event loop     * when a blocked client in a module needs attention. */    aeCreateFileEvent(server.el, server.module_blocked_pipe[0], AE_READABLE, moduleBlockedClientPipeReadable,NULL) == AE_ERR)}

  

  注意:这里所说的“主脉络”是指我们关心的网络通信的主脉络,不代表这个函数中其他代码就不是主要的。

  如何验证这个断点处挂载到 EPFD 上的 fd 就是侦听 fd 呢?很简单,创建侦听 fd 时,用 GDB 记录下这个 fd 的值。例如,当我的电脑某次运行时,侦听 fd 的值是 15 。如下图( 调试工具用的是 CGDB ):

然后在运行程序至绑定 fd 的地方,确认一下绑定到 EPFD 上的 fd 值:

  这里的 fd 值也是 15 ,说明绑定的 fd 是侦听 fd 。当然在绑定侦听 fd 时,同时也指定了只关注可读事件,并设置事件回调函数为 acceptTcpHandler 。对于侦听 fd ,一般只要关注可读事件就可以了,当触发可读事件,说明有新的连接到来。

aeCreateFileEvent(server.el, server.ipfd[j], AE_READABLE, acceptTcpHandler,NULL) == AE_ERR

  acceptTcpHandler 函数定义如下( 位于文件 networking.c 中 ):

void acceptTcpHandler(aeEventLoop *el, int fd, void *privdata, int mask) {    int cport, cfd, max = MAX_ACCEPTS_PER_CALL;    char cip[NET_IP_STR_LEN];    UNUSED(el);    UNUSED(mask);    UNUSED(privdata);    while(max--) {        cfd = anetTcpAccept(server.neterr, fd, cip, sizeof(cip), &cport);        if (cfd == ANET_ERR) {            if (errno != EWOULDBLOCK)                serverLog(LL_WARNING,                    "Accepting client connection: %s", server.neterr);            return;        }        serverLog(LL_VERBOSE,"Accepted %s:%d", cip, cport);        acceptCommonHandler(cfd,0,cip);    }}

  anetTcpAccept 函数中调用的就是我们上面说的 anetGenericAccept 函数了。

int anetTcpAccept(char *err, int s, char *ip, size_t ip_len, int *port) {    int fd;    struct sockaddr_storage sa;    socklen_t salen = sizeof(sa);    if ((fd = anetGenericAccept(err,s,(struct sockaddr*)&sa,&salen)) == -1)        return ANET_ERR;    if (sa.ss_family == AF_INET) {        struct sockaddr_in *s = (struct sockaddr_in *)&sa;        if (ip) inet_ntop(AF_INET,(void*)&(s->sin_addr),ip,ip_len);        if (port) *port = ntohs(s->sin_port);    } else {        struct sockaddr_in6 *s = (struct sockaddr_in6 *)&sa;        if (ip) inet_ntop(AF_INET6,(void*)&(s->sin6_addr),ip,ip_len);        if (port) *port = ntohs(s->sin6_port);    }    return fd;}

  

  至此,这段流程总算连起来了,在 acceptTcpHandler 上加个断点,然后重新运行一下 redis-server ,再开个 redis-cli 去连接 redis-server 。看看是否能触发该断点,如果能触发该断点,说明我们的分析是正确的。

  经验证,确实触发了该断点。

  在 acceptTcpHandler 中成功接受新连接后,产生客户端 fd ,然后调用 acceptCommonHandler 函数,在该函数中调用 createClient 函数,在 createClient 函数中先将客户端 fd 设置成非阻塞的,然后将该 fd 关联到 EPFD 上去,同时记录到整个程序的 aeEventLoop 对象上。

client *createClient(int fd) {    //将客户端 fd 设置成非阻塞的    anetNonBlock(NULL,fd);    //启用 tcp NoDelay 选项    anetEnableTcpNoDelay(NULL,fd);    //根据配置,决定是否启动 tcpkeepalive 选项    if (server.tcpkeepalive)        anetKeepAlive(NULL,fd,server.tcpkeepalive);    //将客户端 fd 绑定到 epfd,同时记录到 aeEventLoop 上,关注的事件为 AE_READABLE,回调函数为    //readQueryFromClient    aeCreateFileEvent(server.el,fd,AE_READABLE, readQueryFromClient, c) == AE_ERR    return c;}

  

如何处理 fd 可读事件

  客户端 fd 触发可读事件后,回调函数是 readQueryFromClient 。该函数实现如下( 位于 networking.c 文件中):

void readQueryFromClient(aeEventLoop *el, int fd, void *privdata, int mask) {    client *c = (client*) privdata;    int nread, readlen;    size_t qblen;    UNUSED(el);    UNUSED(mask);    readlen = PROTO_IOBUF_LEN;    /* If this is a multi bulk request, and we are processing a bulk reply     * that is large enough, try to maximize the probability that the query     * buffer contains exactly the SDS string representing the object, even     * at the risk of requiring more read(2) calls. This way the function     * processMultiBulkBuffer() can avoid copying buffers to create the     * Redis Object representing the argument. */    if (c->reqtype == PROTO_REQ_MULTIBULK && c->multibulklen && c->bulklen != -1        && c->bulklen >= PROTO_MBULK_BIG_ARG)    {        int remaining = (unsigned)(c->bulklen+2)-sdslen(c->querybuf);        if (remaining < readlen) readlen = remaining;    }    qblen = sdslen(c->querybuf);    if (c->querybuf_peak < qblen) c->querybuf_peak = qblen;    c->querybuf = sdsMakeRoomFor(c->querybuf, readlen);    nread = read(fd, c->querybuf+qblen, readlen);    if (nread == -1) {        if (errno == EAGAIN) {            return;        } else {            serverLog(LL_VERBOSE, "Reading from client: %s",strerror(errno));            freeClient(c);            return;        }    } else if (nread == 0) {        serverLog(LL_VERBOSE, "Client closed connection");        freeClient(c);        return;    } else if (c->flags & CLIENT_MASTER) {        /* Append the query buffer to the pending (not applied) buffer         * of the master. We'll use this buffer later in order to have a         * copy of the string applied by the last command executed. */        c->pending_querybuf = sdscatlen(c->pending_querybuf,                                        c->querybuf+qblen,nread);    }    sdsIncrLen(c->querybuf,nread);    c->lastinteraction = server.unixtime;    if (c->flags & CLIENT_MASTER) c->read_reploff += nread;    server.stat_net_input_bytes += nread;    if (sdslen(c->querybuf) > server.client_max_querybuf_len) {        sds ci = catClientInfoString(sdsempty(),c), bytes = sdsempty();        bytes = sdscatrepr(bytes,c->querybuf,64);        serverLog(LL_WARNING,"Closing client that reached max query buffer length: %s (qbuf initial bytes: %s)", ci, bytes);        sdsfree(ci);        sdsfree(bytes);        freeClient(c);        return;    }    /* Time to process the buffer. If the client is a master we need to     * compute the difference between the applied offset before and after     * processing the buffer, to understand how much of the replication stream     * was actually applied to the master state: this quantity, and its     * corresponding part of the replication stream, will be propagated to     * the sub-slaves and to the replication backlog. */    if (!(c->flags & CLIENT_MASTER)) {        processInputBuffer(c);    } else {        size_t prev_offset = c->reploff;        processInputBuffer(c);        size_t applied = c->reploff - prev_offset;        if (applied) {            replicationFeedSlavesFromMasterStream(server.slaves,                    c->pending_querybuf, applied);            sdsrange(c->pending_querybuf,applied,-1);        }    }}

  给这个函数加个断点,然后重新运行下 redis-server ,再启动一个客户端,然后尝试给服务器发送一个命令“set hello world”。但是在我们实际调试的时候会发现。只要 redis-cli 一连接成功,GDB 就触发该断点,此时并没有发送我们预想的命令。我们单步调试 readQueryFromClient 函数,将收到的数据打印出来,得到如下字符串:

(gdb) p c->querybuf $8 = (sds) 0x7ffff09b8685 "*1\r\n$7\r\nCOMMAND\r\n"

  c → querybuf 是什么呢?这里 c 的类型是 client 结构体,它是上文中连接接收成功后产生的新客户端 fd 绑定回调函数时产生的、并传递给 readQueryFromClient 函数的参数。我们可以在 server.h 中找到它的定义:

* With multiplexing we need to take per-client state. * Clients are taken in a linked list. */typedef struct client {    uint64_t id;            /* Client incremental unique ID. */    int fd;                 /* Client socket. */    redisDb *db;            /* Pointer to currently SELECTed DB. */    robj *name;             /* As set by CLIENT SETNAME. */    sds querybuf;           /* Buffer we use to accumulate client queries. */    //省略掉部分字段} client;

  

  client 实际上是存储每个客户端连接信息的对象,其 fd 字段就是当前连接的 fd,querybuf 字段就是当前连接的接收缓冲区,也就是说每个新客户端连接都会产生这样一个对象。从 fd 上收取数据后就存储在这个 querybuf 字段中。

  我们贴一下完整的 createClient 函数的代码:

client *createClient(int fd) {    client *c = zmalloc(sizeof(client));    /* passing -1 as fd it is possible to create a non connected client.     * This is useful since all the commands needs to be executed     * in the context of a client. When commands are executed in other     * contexts (for instance a Lua script) we need a non connected client. */    if (fd != -1) {        anetNonBlock(NULL,fd);        anetEnableTcpNoDelay(NULL,fd);        if (server.tcpkeepalive)            anetKeepAlive(NULL,fd,server.tcpkeepalive);        if (aeCreateFileEvent(server.el,fd,AE_READABLE,            readQueryFromClient, c) == AE_ERR)        {            close(fd);            zfree(c);            return NULL;        }    }    selectDb(c,0);    uint64_t client_id;    atomicGetIncr(server.next_client_id,client_id,1);    c->id = client_id;    c->fd = fd;    c->name = NULL;    c->bufpos = 0;    c->querybuf = sdsempty();    c->pending_querybuf = sdsempty();    c->querybuf_peak = 0;    c->reqtype = 0;    c->argc = 0;    c->argv = NULL;    c->cmd = c->lastcmd = NULL;    c->multibulklen = 0;    c->bulklen = -1;    c->sentlen = 0;    c->flags = 0;    c->ctime = c->lastinteraction = server.unixtime;    c->authenticated = 0;    c->replstate = REPL_STATE_NONE;    c->repl_put_online_on_ack = 0;    c->reploff = 0;    c->read_reploff = 0;    c->repl_ack_off = 0;    c->repl_ack_time = 0;    c->slave_listening_port = 0;    c->slave_ip[0] = '\0';    c->slave_capa = SLAVE_CAPA_NONE;    c->reply = listCreate();    c->reply_bytes = 0;    c->obuf_soft_limit_reached_time = 0;    listSetFreeMethod(c->reply,freeClientReplyValue);    listSetDupMethod(c->reply,dupClientReplyValue);    c->btype = BLOCKED_NONE;    c->bpop.timeout = 0;    c->bpop.keys = dictCreate(&objectKeyPointerValueDictType,NULL);    c->bpop.target = NULL;    c->bpop.numreplicas = 0;    c->bpop.reploffset = 0;    c->woff = 0;    c->watched_keys = listCreate();    c->pubsub_channels = dictCreate(&objectKeyPointerValueDictType,NULL);    c->pubsub_patterns = listCreate();    c->peerid = NULL;    listSetFreeMethod(c->pubsub_patterns,decrRefCountVoid);    listSetMatchMethod(c->pubsub_patterns,listMatchObjects);    if (fd != -1) listAddNodeTail(server.clients,c);    initClientMultiState(c);    return c;}

  

转载于:https://www.cnblogs.com/wzqstudy/p/10270906.html

你可能感兴趣的文章
一个控制台程序,模拟机器人对话
查看>>
Vue 2.x + Webpack 3.x + Nodejs 多页面项目框架(上篇——纯前端多页面)
查看>>
我的PHP学习之路
查看>>
【题解】luogu p2340 奶牛会展
查看>>
解决响应式布局下兼容性的问题
查看>>
使用DBCP连接池对连接进行管理
查看>>
【洛谷】【堆+模拟】P2278 操作系统
查看>>
hdu3307 欧拉函数
查看>>
Spring Bean InitializingBean和DisposableBean实例
查看>>
[容斥][dp][快速幂] Jzoj P5862 孤独
查看>>
软件开发工作模型
查看>>
Java基础之字符串匹配大全
查看>>
面向对象
查看>>
lintcode83- Single Number II- midium
查看>>
[工具] Sublime Text 使用指南
查看>>
Web服务器的原理
查看>>
#10015 灯泡(无向图连通性+二分)
查看>>
HAL层三类函数及其作用
查看>>
web@h,c小总结
查看>>
Data Structure 基本概念
查看>>